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Stabilizing effect of elasticity is not enough to resolve discrepancies
in observations concerning a moving nematic-isotropic interface
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The standard theory describing the shape instability of a moving nematic-isotropic interface
during the directional “solidification” of a liquid crystal disagrees with experiment by a factor of
100. We consider the stabilizing effect of the elasticity in the nematic phase and conclude that
while it reduces the discrepancy, it cannot fully account for the experimental observations. The
disagreement between theory and experiment remains unexplained.

PACS number(s): 64.70.Md, 81.30.Fb, 05.70.Ln, 61.30.Jf

Directional solidification, where one phase freezes at
controlled velocity and temperature gradient, is impor-
tant both technologically and as a setting for explor-
ing the mechanisms of pattern formation in spatially
extended nonequilibrium systems [1,2]. Although most
studies have been of the solid-liquid interface, there
are many advantages to experiments on the nematic-
isotropic interface of liquid crystals [3-5]. The instability
takes place at more convenient velocity and temperature
gradient scales than in solid-liquid systems. The pri-
mary instability from a flat to a rippled interface (see Fig.
4, below) is supercritical and hence more amenable—at
least in principle—to theoretical analysis than the sub-
critical instabilities seen in other systems. Finally, a
number of interesting secondary instabilities have been
discovered [3,6,7] that have stimulated much experimen-
tal and theoretical work. (For a review, see [5].)

Despite these attractive features, there have been per-
sistent difficulties in the quantitative analysis of experi-
mental results. There is a well-developed theory, orig-
inally by Mullins and Sekerka [8], that satisfactorily
predicts instability and wavelength thresholds for solid-
liquid systems [9] as well as for the discotic-isotropic in-
terface in liquid crystals [10,11]. Yet, as we shall discuss
below, the same theory gives results that are off by a
factor of 100 when applied to the nematic-isotropic in-
terface. In this article, we address two points.

(1) The discrepancy between theory and experiment is
unlikely to have a “trivial” explanation (e.g., an error in
the measurement of one of the material parameters that
are inputs to the calculation).

(2) One plausible physical mechanism, the elasticity of
the nematic phase, is too weak to resolve the discrepancy.

Because the calculation by Mullins and Sekerka is well
known, we give only a bare sketch, emphasizing the phys-
ical input to the theory. (See [1,2] for more details.) We
recall, first of all, the experimental setup [12]. Two ovens,
separated by a small gap, are maintained at temperatures
that straddle the nematic-isotropic (NI) transition. The
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sample is a thin (< 10 pm, typically) sandwich of glass,
liquid crystal, and glass bridging the gap between the hot
and cold ovens. A horizontal, linear temperature gradi-
ent G is set up in the sandwich so that the NI interface
appears as a straight line somewhere in the middle of the
gap. A motor then pushes the sample from the hot side
to the cold side at a velocity v, forcing the interface to
move at a velocity —v in order to stay at the same tem-
perature. One can easily describe the motion of the flat
interface in this situation. The calculation by Mullins
and Sekerka tests the linear stability of this interface to
small perturbations and yields a neutral curve G(v) that
divides the v-G parameter plane into regions where the
flat interface is or is not stable. It also gives the wave-
length of the stationary cellular instability at onset.

The instability occurs because of impurities in the lig-
uid crystal. (In a well-controlled experiment, the “im-
purities” would actually be the dilute limit of a known
binary mixture.) The impurities have several effects.

(1) They lower the temperature of the isotropic phase
and open a “freezing range” AT between the two phases.
As a consequence, there is a jump in impurity concentra-
tion Ac at the NI interface. We can write ¢y ({) = kcr (),
where cpy s is the local impurity concentration field in
the N, I phases, evaluated at the interface position
z = ((z,t), and k is the equilibrium partition coefficient,
i.e., the ratio of the liquidus to solidus slopes on the phase
diagram.

(2) Nonuniform concentrations of impurities lead to
diffusion. The diffusion constant for impurities in the
nematic phase turns out to be nearly as high as in the
isotropic phase.

(3) A freezing interface will push impurity molecules to
the liquid side. Conservation of impurities then requires
a jump in the impurity current, i.e., in 60, across the
interface.

The minimal model also takes into account the change
due to surface tension in the equilibrium melting temper-
ature of a curved interface, the Gibbs-Thomson effect [2].
Crudely speaking, if the nematic phase bulges out into
the isotropic phase, surface tension squeezes the nematic
phase, raising its internal pressure and hence lowering its
equilibrium temperature via the Clausius-Clapeyron law.

One effect that we leave out is the kinetic correction
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T(C) =Ty — v/B3, where T({) is the temperature of a
moving front, Ty is the equilibrium NI coexistence tem-
perature, and 3 is the “kinetic coefficient.” This term
has no effect on the thresholds and so cannot explain
the experimental observations [13]. We also make the
“frozen-temperature” approximation, assuming that the
local temperature is fixed by the imposed temperature
gradient, and not affected by the release of latent heat.
This is justified for this weakly first-order transition [14].

In the reference frame moving at a velocity v along the
z axis (with the interface along the z axis), the diffusion
of impurities is described by the dimensionless equations
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Viur +2 3 ot z > ((x,t). (1b)

The boundary conditions at the interface are
UunN = k(uz - 1), (2&)
uI=1—-C/£T—d0K,, (2b)

oC\ = = = 5
(ur —un) 2+a -1 = (vVuy — Vuy) - ni. (2¢)
The dimensionless quantities (without tildes) in

Egs. (1) and (2) are related to physical quantities (with
tildes) as follows: lengths have been scaled by the diffu-
sion length £ = 2D;/% and times by the diffusion time
7 = £2/Dj. The concentration scale is Ac = [(1—k)/k]coo
where co, is the average concentration of impurities in the
sample as a whole. The temperature scale is AT = mAc,
where m is the liquidus slope. This corresponds to
the range of temperature over which there is coexis-
tence between the nematic and isotropic phases. We
then have T = T/AT and un,; = (cN1 — Coo)/Ac.
We let v = Dy /Dy and define two more length scales:
a thermal length f7 = AT/G and a capillary length
do = (v/L)(To/AT), where v is the surface tension and
L is the latent heat. Each of these length scales has a
dimensionless counterpart 7 = {1 /¢ and do = do/¢ that
appears in Egs. (2).

The (/41 in Eq. (2b) represents the shift in the equilib-
rium concentration at the interface due to the change in
position (and hence temperature) of the interface. The
temperature gradient enters the analysis only through
this term. The Gibbs-Thomson effect enters through the
dok term, with x being the curvature of the interface.

Equations. (1) and (2) have a simple solution describ-
ing a flat interface, where k = 0: ( = 0, uy = 0 for
z < 0, and u; = exp(—2z) for z > 0. Ahead of the mov-
ing flat interface, a concentration “spike” of impurities
decays exponentially over a length scale .

To test the stability of the interface, we impose a small
shape perturbation {; = €exp(wt + igz)+ c.c. and lin-
earize the equations of motion with respect to €. The
result is an implicit relation for the growth rate w of a
perturbation of wave number ¢. In the special case of the
symmetric model (v = k = 1), AT > 0, one finds [15]

w=—-2+2(1—£3"—dog®)(1 + ¢* + w)/2. (3)

The dispersion relation for the more general case (v and
k different from 1) is given in the Appendix. We empha-
size that for v and k = 1, the dispersion relation does not
qualitatively change. The neutral curve and onset wave
number ¢* are obtained by solving (numerically) the si-
multaneous equations w(g*) = dw(g*)/dq = 0. Sample
curves are shown in Figs. 1 and 2. Note that there is
a maximum freezing velocity vyax and temperature gra-
dient Gpax beyond which the interface is always stable.
There is also a maximum wave number gmax (0r minimum
wavelength). For the symmetric model, these quantities
are given in dimensional units by

= gv Gmax ~ é'g:a 9max — i (4)

0 0 do
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In the more general case (v and k # 1), the scalings are
still valid, although the coefficients depend on v and k.
As long as these two parameters are close to 1 (and they
are in our case), the coefficients will also be of order 1.

The first experiments on directional solidification of
the NI interface by Oswald et al. [16,12] were compli-
cated by the presence of solutal convection. The added
impurity, C, Clg, had a density that was about twice that
of the host liquid crystal, 8CB (4'-n-octylcyanobiphenyl).
The concentration gradient in front of the NI interface led
to a backroll where the heavy impurities sank, bringing
in purer liquid to the interface and raising the effective
diffusion constant. By making the sample thinner than
about 5 um, the effect disappeared, but no detailed com-
parison was made with the Mullins-Sekerka theory for
these thin samples.

Recently, Figueiredo et al. [17] redid the experiment
using 8CB with absorbed water as the impurity. Because
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FIG. 1. Marginal-stability curves dividing the veloc-

ity-temperature gradient parameter plane into stable and un-
stable regions for fixed overall impurity concentration. (a)
Curve deduced from the measurements by Figueiredo et al.
(b) Curve deduced using the known value of v and L. (c)
Curve deduced using the known parameter values and adding
elastic effects.
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FIG. 2. Onset wave number vs freezing velocity for fixed
overall impurity concentration. (a) Curve deduced from the
measurements by Figueiredo et al. (b) Curve deduced using
the known values of v and L. (c) Curve deduced using the
known parameter values and adding elastic effects.

the sample thickness was 3.5 pm and because pg,0 =
1.00 gm/cm?® nearly matches pgcp = 0.97 gm/cm?, solu-
tal convection was negligible. (Thermal convection can
also be shown to be negligible in such thin samples [12].)
They inferred the various material parameters, includ-
ing /L, by fitting their data for the growth rates w and
onset wave numbers ¢* to the standard Mullins-Sekerka
theory. All of the values that they deduce are reason-
able except for the ratio /L, whose value is 100 times
larger than the value obtained by independent measure-
ments. Furthermore, the Mullins-Sekerka theory, using
either the parameters inferred by Figueiredo et al. or
the parameters deduced by different types of experimen-
tal measurements of v and L, predicts values for vp.x,
Gmax, and gmax that are each 100 times larger than the
values measured in the experiment. (See Table I.)

Our first point is that with the exception of the ratio
v/L, any errors in the parameter values are unlikely to
explain the discrepancy between the predicted and ob-
served instability scales. We consider each parameter in
turn.

Coo: The value of 0.14 mol % matches the equilibrium
concentration of water in 8CB (0.15 mol %) specified
by the manufacturer, BDH. Further, the sample would
have to be much purer to bring the numbers into even
approximate agreement.

m and k: Ghodbane and Martire [18] measured the
liquidus slope and partition coefficient for 20 different
impurities in 8CB. In all cases, they found 0.8 < m <
1.8 °C/mol% and 0.72 < k < 0.92. The values in Table
I fall within this range.

AT: As a final check, AT = mco (1 — k)/k was mea-
sured directly in our laboratory on a similar 8CB sample.
We found AT = 0.21 °C, which is roughly consistent

TABLE I. Parameter values for the directional solidifica-
tion of 8CB used to compute curve (b) in Figs. 1 and 2 (data

from [12,17]). The parameters G*, v*, and ¢* are typical
destabilization values found in [17].

Coo 0.14 + 0.02 (mol %)

m 1.35 (°C/mol %)
k 0.740 + 0.004

D; 6.7 x1077 (cm?/sec)
v 0.5

v 0.95 £ 0.4 x1072 (erg/cm?)
L 2.05 £ 0.02 x107 (erg/cm?®)
v/L 0.047 (A)

G* 43 (°C/cm)

v* 10 (pm/sec)
7 0.1 (pm™1)

with the data of Figueiredo et al. To get approximate
agreement would require AT ~ 1073 °C.

Dy and Dj: Independently measured values of Dy
for self-diffusion of 8CB and of dye molecules give 4—
5%10~7 cm?/sec [12]. The diffusion constant of water
should be a little higher. Diffusion in the nematic phase
is anisotropic: small molecules diffuse faster (usually by
about 25%) along the director of the nematic phase than
across it. Because the samples in the experiments are
homeotropic (i.e., the nematic molecules are constrained
to be perpendicular to the glass plates at the boundaries),
one is tempted to use Dy, which leads one to expect
v = 0.5; however, the scales vmax, Gmax, and gmax are
rather insensitive to the precise choice of v. For example,
they vary by less than 20% as v changes from 0.5 to 1.0.

We note in passing that the control parameters v, G,
and q are all measured directly in the experiment to an
accuracy that is easily better than 5%. They cannot
explain the error.

The final two parameters are the surface tension vy and
the latent heat L. The experiment is sensitive to their
ratio through the Gibbs-Thomson effect, and they come
into the theory via the dimensionless capillary length dy.
Figueiredo et al. conclude that the ratio v/L should be 6
A. Such a value is in itself unremarkable, for it closely
matches that deduced in solid-liquid [9] and discotic-
isotropic [10,11] experiments.

However, independent measurements of v and L indi-
cate that their ratio is approximately 0.05 A. (See Table
I.) The latent heat of 8CB has been measured by adia-
batic scanning calorimetry [19] and confirmed by care-
ful differential scanning calorimetry measurements [20].
Likewise, the surface tension of the NI interface is con-
sistently of order 1072 erg/cm? and has been measured
using light scattering [21], interface reflectivity [22], ses-
sile drops [23], and electric fields [24,25]. Perhaps the
most convincing measurement for our purposes is that
by Armitage and Price [26], who showed that embed-
ding the liquid crystal in a porous medium with 100 A
pores depressed the NI transition temperature by only
0.1 °C. This gives the ratio /L directly: R(AT/To) =
100 A (0.1/400) =~ 0.025 A.

Why might v/L be so small? Ordinarily, one expects
v/L to be approximately the bare correlation length, &g.
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This length is usually a few angstroms (it is also close
to the thickness of the interface) and explains why most
directional solidification experiments deduce similar val-
ues for v/L. The NI system has a much smaller value of
v/L because the transition is nearly second order, and
critical effects are important [28]. Approaching a criti-
cal point, both v and L vanish and one can show that
v/L ~ &o(é0/§) — 0 [12].

Thus we conclude that the surprisingly small value of
0.05 A is real, although it completely disagrees with the
results of the solidification experiment. Nonetheless, of
all the material parameters, we focus on this one for two
reasons.

(1) The three quantities ¥max, Gmax, and gmax are all
off by a factor of 100. The only parameter that affects
all three parameters linearly is v/L. For example, in
Eq. (4), we see that the diffusion constant affects vmax
but not Gupax OF ¢max. Also AT (and hence co,) enters
linearly in vgax and gmax but quadratically in G pax-

(2) The mathematical role of v/L is to provide a cutoff
length that stabilizes against small perturbations. If the
surface tension is so small that the cutoff length is less
than a molecular size, then it is reasonable to look for
another stabilizing force. An obvious candidate is the
elasticity of the nematic phase. Molecules are known
to lie at a preferred angle at the NI interface. If this
angle is maintained while the interface is deformed, the
nematic will be stressed elastically. We now examine the
consequences [27].

We shall simplify somewhat the physics to make the
calculation tractable while still illustrating the orders
of magnitude that arise. We constrain the nematic di-
rector to lie in the zz plane, and continue to neglect
three-dimensional effects (see below, however). The local
molecular orientation is then characterized by the angle
o(z, z,t), where we define ¢ = 0 to be along the z axis
and ¢ = w/2 to be along the +z axis. We assume that
there is never any fluid flow in the nematic; that is, our
nematic “hydrodynamics” includes only the dynamic re-
orientation of the director. Because the samples are thin
(3.5 pm), this is reasonable. We assume strong anchor-
ing, i.e., we assume that the director molecules always
maintain their preferred orientation with respect to the
interface, whatever the interface deformation. (In fact,
this is not true experimentally, but making this assump-
tion mazimizes the elastic effect.) Finally, we use the
“one-constant” elastic-energy approximation, in which
bend, splay, and twist deformations all cost equal energy.
In this approximation, when the director is constrained
to lie in the plane, the elastic energy per unit height takes
the form [28]

Eq = %K/da:dz [Vo|®. (5)

K is the Frank elastic constant (= 107% dyn). The di-
rector orientation relaxes with a rotational viscosity ~v;
(0.1 P), leading to an equation of motion [29] v18¢/8t =
—0FE./dp, which in the moving frame becomes

Op Oy

K -~
2= DN 4+ 527,
ot Y1 <p+v8§ (6)

This must be solved with the assumed strong anchor-
ing boundary conditions. Rescaling Eq. (6) introduces
the dimensionless parameter n = K/(y1Dr) =~ 20, which
suggests that elastic coupling can be important.

Setting ¢ = 0 leaves the previously obtained flat-
interface solution unchanged. Perturbing about this so-
lution, ¢ = € exp(Qz + wt + igx) + c.c., and substituting
into the dimensionless form of (6) gives an inverse elas-
tic decay length Q = [{/1 + nw + n2¢? — 1]/n. Usually,
g > 1, so that Q@ =~ g — elastic deformations are ex-
pected to penetrate about one wavelength into the bulk
nematic.

Next, we compute the generalization of the Gibbs-
Thomson correction: elastic deformations raise the free
energy of the nematic phase and, by an analog of the
Clausius-Clapeyron law, lower its coexistence tempera-
ture with the isotropic phase. Let h be the thickness of
the sample, A the area of the nematic phase, and Lju
the length of the nematic-isotropic interface. Then the
energy F is

1
h

Since ¢(z, z) depends on ((z), E is a functional of ¢. In
equilibrium

0
E = ApA+ yLjnt + —;—K/da:/ dz|Vepl2. (7)

6F

6¢
Substituting the first two terms on the right-hand side of
(7) into (8), and using

=0. (8)

JA )
Ry / de¢(z) = 1 9)
and
(;Lint _ i 2 _ CH
56 ~5¢ /d””V L=~y ey
62
=-Kk= —8—1:5 (10)

yields the usual Gibbs-Thomson relation, when the Ap
is related to Ac through the Clausius-Clapeyron law.

In the third term of Eq. (7), let o(z,2)=
¢o(x) exp(Qz), where the inverse decay length Q is given
above and where the boundary condition (strong anchor-
ing) requires

wo(x) = 8¢/dz + o((?), (11)

up to an unimportant constant. Then
0
/ dx / dz |Vpl|?
0
= /dm/ dz (0200 + Qipo)2e?9* (12)

1 1
= /dl' {E(aﬂpo)z + §Q<P§}
+boundary terms (13)

z/da: {% (%)2+%Q (%)2}- (14)
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The first term in the integrand looks like a rigidity, as
in the Helfrich model for membranes [30]. Taking the
functional derivative,

) 2 10% 8%¢
Now Eq. (8) becomes
1Ko 1
0=Ap——fyfc+§§5m—i—§KQn. (16)

Scaling this equation,

1 8%

d 1
= 20Ap = — 2 =
Ap' = 7Ap dok 2ZE( 92t

n) , 17
and perturbing ¢ with a sinusoid of wave number ¢, we
see that the term doq? in the scaled dispersion relation
(3) should be replaced by dog? + (1/2)¢%(¢*/Q + Qq?),
where the elastic length (2 = (K/L)(To/AT)/¢?. The
full dispersion relation becomes (again for v = k = 1,
although our numerical work was for the general case;
see the Appendix)

4
w(g) = -2+ [(1 —£7:") — dog® — -;—KZE (Qq2 + %)]

X4/1+w+ ¢2. (18)

The results of the calculation are shown in Figs. 1 and
2. In each of these figures, curve (a) uses the parameters
deduced by Figueiredo et al. from the free fit to their
data. Curve (b) substitutes the known value of /L, il-
lustrating the 100-fold discrepancy with curve (a). Curve
(c) uses the same parameters as in (b) but also includes
elastic effects.

Although elasticity reduces the discrepancy between
theory and experiment, it still leaves a wide gap to be
explained. Moreover, we have probably overestimated
the importance of elastic effects in our own calculation.
As we have mentioned above, the anchoring at the inter-
face is not strong, contrary to our assumption in (11).
Faetti and Palleschi have measured the surface tension,
anchoring angle, and anchoring strength of the NI inter-
face of 8CB [22]. By measuring the interface reflectivity
in the presence of a magnetic field, they deduce

v =70+ A(p — po0)?, (19)

with 79 given in Table I, ¢o = 48.5 £ 6°, and A =
8.5 + 2.1 x 107* erg/cm? the anchoring strength; i.e.,
A/vo = 0.09 <« 1. These numbers are also consistent
with a similar study using electric-field deformation [31].
Thus any elastic distortions in the nematic will be largely
relaxed by changing the value of ¢ at the NI interface.
One might wonder whether the three-dimensional
structure of the director field near the interface is rel-
evant. As argued on the basis of polarizing microscope
observations in previous work [16,12], the interface and
surrounding director field are as depicted in Fig. 3. It
is easy to rule out the effects of the nonsingular distor-
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FIG. 3. Side view of the meniscus between the nematic
and isotropic phases. The orientations of nematic molecules
in this homeotropically anchored sample are shown. Note
the disclination line just behind the interface. (The line is
perpendicular to the plane of the figure.)

tions. Imposing representative director configurations
with nonsingular variations over the sample thickness
leads to O(1) changes in the elastic free energy. The effect
of the disclination line shown in Fig. 3 is less clear. The
experimental evidence, however, argues against its rele-
vance. When the interface is driven rapidly enough, the
disclination line detaches [16,32,33]. Because the defect
line moves with a maximum velocity vine = K/(v1h), it
cannot catch up to the front if v > vjjpe. The defect line
detaches hysteretically; the interface must go much faster

tip

Planar
Nematic

Homeotropic
Nematic

FIG. 4. Triangle domains viewed between crossed polariz-
ers. The large triangles are regions of nematic oriented in the
plane of the sample plates, while the surrounding material is
homeotropic (perpendicular to the plates). The baroque ar-
chitecture of the NI interface is due to the structure of the
meniscus. Within the triangles, the defect line is detached,
and our analysis (see text) applies. Note that in these regions
the nematic director field is distorted to a distance comparable
to the wavelength, and that the wavelength of the instability
is slightly increased.
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than v)j,e to detach the defect, probably because of extra
pinning forces localized to the interface. The result, illus-
trated in Fig. 4, is that regions where the defect line is or
is not attached may coexist. As Fig. 4 shows, the pres-
ence or absence of the defect line has little effect on the
wavelength of the instability. (More careful observations
suggest that the wavelength increases about 10% when
the line is detached [32,33].) We have also made obser-
vations on planar and randomly oriented samples (using
untreated glass plates for the latter). In each of these
cases, the wavelengths and thresholds do not vary dra-
matically despite the variety of directory configurations.
Therefore, since the defect line strongly affects the three-
dimensional (3D) structure of the director field, and since
its presence does not significantly affect the wavelength
of the instability, we conclude that the 3D structure of
the director field does not strongly alter our results.

Another effect that we have not considered is the three-
dimensional shape of the interface. Because the zero-
order solution is curved in the vertical direction, the lin-
ear stability analysis is modified. This has been discussed
for the symmetric model by Caroli et al. [34], who con-
clude that the velocity thresholds are indeed depressed.
They, however, assumed that the contact angle between
the meniscus and the glass plates was close to 90°, which
is not true for the NI interface. More experimental and
theoretical work is required to assess the relevance of
these thickness effects.

While calculating the elastic effects discussed above,
we learned that Misbah and Valance [35,36] had also con-
sidered effects of elasticity on the interface instability;
however, they focus on the coupling between the director
field and the anisotropic diffusion in the nematic. They
did not evaluate the specific coupling that we discuss
here.

We have reviewed the theories and measurements of
the shape instability of a moving nematic-isotropic inter-
face. The simplest theories yield numbers that are 100

times larger than the observed values, a discrepancy that
is too large to explain away by inaccurate material pa-
rameter measurements. We then considered the effects
of the nematic’s elasticity. The evidence from our calcu-
lation and from the experiments themselves is that elas-
tic effects are noticeable but small. Some other physical
mechanism seems responsible for imposing the inferred
cutoff length of 6 A, but the source of this stabilization
remains a mystery.
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by the Alfred P. Sloan Foundation. We are grateful
to Chaouqi Misbah for correspondence and for making
results available to us in advance of publication. We
thank Nancy Tamblyn and Angelo Miele for measuring
the value of AT.

APPENDIX

Here, we give the full dispersion relation that we used
in our numerical calculations. We emphasize that for the
case of the nematic-isotropic interface, where the parti-
tion coefficient k£ and the ratio of diffusion constants v
is roughly 1, the special case of the dispersion relation
given in the text has all the qualitative features of the
algebraically more complicated exact relation. For the
dispersion relation, we find

w==24+0-k{'+H)+C2C—Lr'—HV1i+ @ +w

—k(:r + F)V1+ v2g? + vw, (A1)
where
F@w) = dod® + L(Q +4°/Q). (A2)

Note again that elastic effects enter only through the {5
term.
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FIG. 4. Triangle domains viewed between crossed polariz-
ers. The large triangles are regions of nematic oriented in the
plane of the sample plates, while the surrounding material is
homeotropic (perpendicular to the plates). The baroque ar-
chitecture of the NI interface is due to the structure of the
meniscus. Within the triangles, the defect line is detached,
and our analysis (see text) applies. Note that in these regions
the nematic director field is distorted to a distance comparable
to the wavelength, and that the wavelength of the instability
is slightly increased.



